Chapter 25: Nutrition, Metabolism, and Temperature Regulation

I. Nutrition

A. Nutrients

1. What are nutrients? ___
 __
 __

2. List the six major classes of nutrients:
 a. ____________________ d. ____________________
 b. ____________________ e. ____________________
 c. ____________________ f. ____________________

3. Which of these are the major organic nutrients? ____________________,
 ____________________, & ____________________

4. Enzymes break organic nutrients into subunits that are:
 a. Broken down __
 b. Used as building __

5. What are "essential nutrients"? _____________________________
 __
 __

B. Kilocalories

1. Energy used by the body is stored within _____________________________

2. Define the term calorie: __

3. A kilocalorie is equal to ______________________________

4. How many kilocalories in one gram of carbohydrate? __________

5. How many kilocalories in one gram of fat? __________

C. Carbohydrates

1. Sources in the Diet
 a. Carbohydrates include ____________, _____________, & ____________
 b. The most common monosaccharides in the diet are _______________ &

 c. Table sugar is a disaccharide called ____________________ and is
 composed of a ____________________ and ____________________
 d. Maltose is a disaccharide composed of ___________________________
e. Lactose is a disaccharide composed of _____________ & ____________
f. The complex carbohydrates are the polysaccharides: ________________, ________________, & ________________
g. Which is the energy storage molecule used in plants? ________________
h. Which is the energy storage molecule used in animals? ______________
i. Which polysaccharide forms cell walls in plants? ________________

2. Uses in the Body
 a. What form of carbohydrate is absorbed into the blood? _______________
b. Which polysaccharide are humans unable to digest? _________________
c. The liver converts all monosaccharides to ________________
d. Most cells use glucose to produce ______________________
e. Excess glucose is converted to ________________ for storage
 1. Additional glucose may be converted to __________ and stored in ________________
f. Other uses of sugar in the body include:
 1. Form part of ________________ & ______________
 2. Combine with proteins to form ______________________

3. Recommended Amounts
 a. The daily kilocalorie intake from carbohydrates should be __________
 b. Why are complex carbohydrates recommended? ________________

D. Lipids
 1. Sources in the Diet
 a. Triglycerides make up about __________ of the lipids in the human diet
 b. Triglycerides are also known as ______________________
 c. A triglyceride molecule consists of ______________________
 attached to a ______________________
 d. Saturated fats have only ______________________
 e. Unsaturated fats have ______________________
 f. The remaining lipids in the diet include ____________ & ____________
2. Uses in the Body
 a. Triglycerides are an important source of __________ used to produce ______________________________
 1. What type of cell gets most of its energy from triglycerides?

 b. Excess triglycerides are stored in _______________ or the __________
 c. Functionally adipose tissue:
 1. Stores __________________________
 2. Surrounds and __________________________
 3. Under the skin __
 d. Functionally cholesterol is a:
 1. Component ______________________________
 2. Modified to form ____________________ & ____________________

3. Recommended Amounts
 a. The daily kilocalorie intake from lipids should be __________________
 b. Which fatty acids must be ingested in the diet? ____________________ & ____________________

E. Proteins
 1. Sources in the Diet
 a. Proteins are chains of __________________________
 b. How many amino acids are in human proteins? __________________________
 c. How many amino acids are essential amino acids? __________________________
 d. A complete protein food contains ______________________________
 2. Uses in the Body
 a. Amino acids are used to ______________________________
 b. Proteins are also used as a ______________________________
 c. Excess proteins can be stored by converting amino acids to __________
 or __________________
 3. Recommended Amounts
 a. The daily kilocalorie intake from protein should be __________________
F. Vitamins
1. What are vitamins? __
2. Essential vitamins must be in the diet because ____________________

3. What does the body do with provitamins? ________________________
4. Vitamins are used by the body in _______________________________
5. Many vitamins function as __
6. Fat-soluble vitamins dissolve in _________________________________
 a. Absorbed from the intestine along with ________________________
 b. Some of them can be stored for a _____________________________
7. Water-soluble vitamins dissolve in _______________________________
 a. Absorbed from the __
 b. Remain in the body __
8. What does RDA stand for? _____________________________________
9. The RDA's for vitamins and minerals establish a minimum that should protect
 ________________________________ in a given group
G. Minerals
1. What are minerals? ___
2. Functionally minerals are involved in:
 a. Establishing ___
 b. Generating __
 c. Adding mechanical __
 d. Combining with __
 e. Acting as ____________, ____________, or _______________________
3. Minerals are ingested __
H. Daily Values
1. What are daily values? ___
2. Reference Daily Intakes are based on _____________________________
 a. RDIs are set for four groups: ________________________________,
 ________________________________,
 ________________________________, and _________________________
3. The Daily Reference Values (DRVs) are set for:
 a. ____________________ e. ____________________
 b. ____________________ f. ____________________
 c. ____________________ g. ____________________
 d. ____________________ h. ____________________

4. The Daily Values are a combination of _____________ and ______________

5. The Daily Value for some nutrients is the uppermost limit considered
desirable because of __

II. Metabolism
A. Definitions
 1. What is metabolism? __
 2. What is anabolism? ___
 3. What is catabolism? ___
 4. The cellular metabolic processes are often referred to as ______________
 ______________ or ______________________________
 5. The food molecules taken into cells are catabolized and the released energy
 is used to ___
 6. What molecule is the "energy currency" of the cell? ________________
 7. Transferring energy from food molecules to ATP molecules involve
 ______________________________ reactions
 a. A molecule is reduced when ______________________________
 b. A molecule is oxidized when ______________________________
 8. Nutrient molecules have many hydrogen atoms covalently bonded to the
 carbon atoms and is therefore highly _________________
 a. When a hydrogen ion and associated electron are lost from the nutrient
 molecule, the molecule ____________________ and __________________
 b. The energy in the electron is used to ___________________________
III. Carbohydrate Metabolism

A. Glycolysis

1. Glycolysis is a series of chemical reactions in the ____________________ that results in the breakdown of ____________ into ____________________

2. Glycolysis is divided into ____________________:
 a. Input of ATP
 1. Phosphate group is transferred from ATP to glucose forming ____________________
 a. What is this process called? ____________________
 2. The atoms are rearranged to form ____________________
 3. Another phosphate group is transferred from a second ATP forming ____________________
 b. Sugar Cleavage
 1. Fructose-1,6-bistrophosphate is cleaved into two molecules each having three carbons:
 a. ____________________
 b. ____________________
 2. Dihydroxyacetone phosphate is rearranged to form ____________________
 3. So the end product is 2 molecules of ____________________
 c. NADH Production
 1. Each glyceraldehyde-3-phosphate molecule is oxidized to form ____________________ and ____________________ is reduced to ____________
 2. Functionally NADH is a carrier molecule with ____________________ that ____________________
 d. ATP and Pyruvic Acid Production
 1. Each 1,3-bisphosphoglyceric acid molecule forms a. Two ____________________ b. One ____________________

3. Summary of Glycolysis
 a. Each glucose molecule that starts glycolysis forms four ____________.
two ____________________, and two ____________________________
b. The start of glycolysis required the input of _________________________
c. Therefore the final yield for each glucose molecule is two _____________,
two ____________________, and two ____________________________

B. Anaerobic Respiration
1. Anaerobic respiration is the breakdown of glucose in the absence of _______
 __________ to produce two ____________________ & two _____________
2. Anaerobic respiration is divided into ____________________:
 a. Glycolysis
 1. Glucose converted to two ____________________ & two __________
 a. Also a net gain of ______________________________
 b. Lactic Acid Formation
 1. Conversion of pyruvic acid to ____________________
 2. Requires input of energy from ______________________________
3. Where does the lactic acid go from the cell? __________________________
4. What is the Cori cycle? ___
 a. Requires the input of __________________
 b. The oxygen necessary is part of the __________________________

C. Aerobic Respiration
1. Aerobic respiration is the breakdown of glucose in the presence of _______
to produce ____________________, __________, & ___________________
 a. The four phases are:
 1. ______________________________
 2. ______________________________
 3. ______________________________
 4. ______________________________
2. Glycolysis is the first phase in ______________________________ and

3. Acetyl-CoA Formation
 a. Pyruvic acid molecules move from the __________ into a _____________
b. Within the inner compartment of the mitochondrion enzymes remove a ___________ and two ___________ from the three-carbon pyruvic acid molecule to form _______________ & ________________________

1. Energy is released in the process and is used ________________________________

2. The acetyl group joins with coenzyme-A to form __________________

c. Summary

1. From each 2 pyruvic acid molecules from glycolysis (1 glucose) get:
 a. Two ______________________________
 b. Two ______________________________
 c. Two ______________________________

4. Citric Acid Cycle

a. Begins with a citric acid molecule that forms from the combination of __________________ and ______________________________

b. Through a series of reactions another ____________________ is formed which can start the cycle again by joining with ______________________

c. Three important events occur during the citric acid cycle:

1. ATP Production
 a. Each citric acid molecule produces __________________

2. NADH and FADH₂ Production
 a. For each citric acid molecule:
 1. Three ____________________ are converted to ____________
 2. One ____________________________ is converted to _______

3. Carbon Dioxide Production
 a. Each six-carbon citric acid molecule becomes a ________________________________
 b. Two ____________________ and four ____________________
 from the citric acid molecule form _______________________

d. Summary for each glucose that begins aerobic respiration, produce:

1. Two ____________________ in glycolysis
2. Converted into two ____________________ that enter Kreb's cycle
3. In the citric acid cycle (Kreb's cycle) two turns of the cycle occur:
 a. Two ______________________________
 b. Six ______________________________
 c. Two ______________________________ &
 d. Four ______________________________

5. Electron-Transport Chain
 a. The electron-transport chain is a series of electron carriers in the ____________________________
 b. Electrons from __________ & __________ are transferred to the electron-transport carriers and ________________ released from NADH & FADH₂
 c. The now oxidized NAD⁺ and FAD are reused to________________________

 d. The released electrons pass from one electron carrier to the next in a series of ____________________________
 e. Three of the electron carriers also function as proton pumps that move hydrogen ions from ________________ to the ________________
 1. The proton pump accepts an ________________
 2. Uses some of the electron's energy to ________________
 3. Passes the electron to the ________________
 f. The last electron carrier in the series:
 1. Collects the ________________
 2. Combines them with __________ & ___________ to form ________
 g. Without oxygen to accept the electrons ___________________________
 h. As the proton pumps move hydrogen ions into the outer compartment:
 1. The concentration of hydrogen ions in the outer compartment ____________________________
 2. Hydrogen ions diffuse ____________________________
 3. The hydrogen ions diffuse through channels called ________________
 4. As each hydrogen ion diffuses through the channel it loses _________ which is used to produce ___________________________
 a. This is called the ____________________________
6. Summary of ATP Production
 a. For each glucose molecule, aerobic respiration produces a net gain of

 1. ________ from glycolysis
 2. ________ from the citric acid cycle
 3. ________ from the electron-transport chain
 a. Each NADH molecule formed produces ________ ATP molecules
 b. Each FADH$_2$ molecule formed produces ________ ATP molecules
 b. The number of ATP molecules produced per glucose is also reported as a
 net gain of ________________________________
 1. The two NADH molecules produced by glycolysis cannot cross the

 a. They donate their electrons to a shuttle molecule that carries the
 electrons to the ________________________________
 1. Depending on the shuttle molecule ________ ATP's are made
 2. In skeletal muscle and brain, ________ molecules are produced for
 each NADH from glycolysis for a net gain of _________________
 3. In liver, kidneys, and heart, ________ molecules are produced for
 each NADH from glycolysis for a net gain of _________________
 c. How many carbon dioxide molecules are produced? _________________
 d. In aerobic respiration water molecules are both ___________________ &

 1. ________ water molecules are used, but ________ are formed
 for a net gain of ________ water molecules
 e. Aerobic respiration for one glucose molecule is summarized chemically:

IV. Lipid Metabolism
 A. Storage
 1. What is the body's main energy-storage molecule? _________________
 2. Glycogen accounts for about ________ of energy-storage
3. Lipids are stored primarily as ____________________ in ________________

4. Between meals, when blood nutrient levels are low, adipose tissue
__

5. What are "free fatty acids"? ________________________________
 a. What cells use them for energy? ________________________________

B. Beta-oxidation
 1. Beta-oxidation refers to the metabolism of ________________________________
 a. A series of reactions remove _________ carbon atoms at a time from the
 end of a fatty acid chain to form ________________________________
 2. Acetyl-CoA can then enter the ____________________ and be used to

C. Ketogenesis
 1. Two molecules of acetyl-CoA combine to form ________________________________
 which is converted mainly to ________________ and ________________
 a. The three molecules formed are referred to as ________________________________
 2. Ketone bodies are released in the blood and travel to other tissues where
 they are converted back into ________________________________ & enter the
 ________________________________ to produce __________

V. Protein Metabolism
 A. Synthesis of Nonessential Amino Acids
 1. The process usually begins with ________________________________
 2. How is a keto acid converted to an amino acid? ________________________________
 3. What is transamination? ________________________________
 4. Most amino acids can undergo transamination to produce ________________________________
 5. What is used as a source of an amine group to construct most of the
 nonessential amino acids? ________________________________
 B. Amino Acids as an Energy Source
 1. In oxidative deamination:
 a. An amino group is ________________________________
b. Leaving ____________________ and a ____________________

c. In the process _________ is reduced to ___________ which can enter ______________________________ to produce ___________

2. Ammonia is toxic to cells:
 a. The liver converts it to ______________
 b. Carried by the blood to the ____________ where it is ______________

3. Keto acid can also enter the ______________________________ cycle or be converted into ______________________ or ______________________

VI. Interconversion of Nutrient Molecules

A. Carbohydrate Storage
 1. Blood glucose enters most cells by ______________________________
 2. Inside the cell it is converted to ______________________________ and used in cellular respiration to produce __________________
 3. When excess glucose is present it is converted to ______________
 a. The process is known as __________________
 b. Most of the body's glycogen is in ______________ & __________

B. Lipid Synthesis
 1. When the limited glycogen stores are filled, glucose and amino acids are used to synthesize ______________
 a. The process is known as ______________________________
 1. Glucose molecules form:
 a. ______________________________ and __________________
 2. Amino acids are converted to ______________________________
 3. Glyceraldehyde-3-phosphate is converted to __________________
 4. Fatty acid chains are formed by joining together __________________
 5. Finally triglycerides are formed by joining together ______________
 & ______________________________

C. Carbohydrate Mobilization
 1. When glucose is needed glycogen is broken down into ______________
 a. The process is called ______________________________
2. What happens to glucose-6-phosphate in skeletal muscle? ______________
 __

3. What happens to glucose-6-phosphate in the liver? ________________
 __
 a. This is necessary to maintain ________________ between meals
 b. For what organ is this most important? ________________

4. Amino acids and glycerol can be used to produce ________________
 a. The process is called ________________
 1. Amino acids are converted to ________________ or ________________
 a. These molecules are then converted to ________________
 2. Glycerol is converted to ________________ which then enters ________________

VII. Metabolic States
A. Absorptive State
 1. Period immediately after a meal when ________________
 2. Most of the glucose that enters circulation is used ________________
 3. Remainder of the glucose is converted to ________________ or __________
 4. Most of the absorbed fats are deposited in ________________
 5. Many of the absorbed amino acids are used ________________
 a. Some are used for ________________
 b. Others enter the liver and are converted into ________________ or ________________

B. Postabsorptive State
 1. Blood glucose levels are maintained by conversion of ________________
 ________________ to ________________
 a. The first source is ________________ stored in the liver
 b. Next fats are used as an energy source:
 1. Glycerol from triglycerides can be converted to ________________
 2. Fatty acids from triglycerides can be converted to ________________
 a. Moves into the ________________ & used ________________
b. In the liver they are used to produce ________________________ that other tissues use for energy

2. The use of fatty acids as an energy source:
 a. Partly eliminates ________________________________
 b. Resulting in ________________________________
 c. Maintenance of ________________________________

3. What other molecule can be used as a source of glucose or for energy production? ______________________________

VIII. Metabolic Rate

A. Metabolic Rate
 1. Metabolic rate is the total ______________________ produced and used by the body ______________________
 2. Metabolic rate is usually estimated by measuring ______________________
 3. One liter of oxygen consumed by the body is assumed to produce ______________________

B. Basal Metabolic Rate (BMR)
 1. The basal metabolic rate is the metabolic rate calculated in ______________
 ______________ per ______________________ per ____________
 2. How is BMR determined? ________________________________

 3. BMR is the energy needed to ________________________________
 4. Basal metabolism accounts for about __________ of energy expenditure
 5. Factors that affect the BMR include:
 a. Muscle tissue is ________________________________
 b. Younger people ________________________________
 c. Fever ________________________________
 d. Reduced kilocaloric input ________________________________
 e. Thyroid hormones ________________________________
 f. Epinephrine ________________________________
 g. Males ________________________________
h. During pregnancy __

C. Thermic Effect of Food
1. Assimilating ingested food consumes energy when:
 a. Accessory digestive organs and the intestinal lining ________________
 b. Motility of the digestive tract ________________
 c. Liver is involved in ________________
2. The energy cost of these activities is called the ______________________
 a. They account for about __________ of the body's energy expenditure

D. Muscular Activity
1. Muscular activity consumes about __________ of the body's energy
2. Increased physical activity using skeletal muscle requires more energy for:
 a. Skeletal muscle ________________
 b. Increased contraction of the ___________ & ______________________
3. Energy loss through muscular activity is the only component of energy
expenditure that __

IX. Body Temperature Regulation
A. Homeotherms
1. What does the term homeotherm or being warm-blooded animals mean for
 humans? __
2. Maintenance of a constant body temperature is important to _____________
3. Most enzymes are very temperature sensitive and only function ___________

 a. Environmental temperatures ______________________________
 b. Heat produced by metabolism ________________________________

B. Free Energy
1. Define the term "free energy": _______________________________________
 __
 a. Usually expressed in terms of ____________ per ______________
2. How much of the energy released by catabolism is used to do work? ______
3. What happens to the rest of the energy? _____________________________

C. Heat Exchange

1. What is radiation? ___
 __

2. What is conduction? ___
 __

3. What is convection? ___
 __

4. What is evaporation? __
 __

5. Body temperature is maintained by _________________________________
 a. If heat gain exceeds heat loss _________________________________
 b. If heat loss exceeds heat gain _________________________________

6. Heat gain occurs through ______________ & _________________________

7. Heat loss occurs through ______________________________

8. Radiation, conduction, and convection can result in heat gain or loss
depending on __

9. What determines the amount of heat exchanged between the environment
and the body? _________________________________
 a. The greater the temperature difference __________________________

10. Temperature difference can be controlled physiologically through ________
 __ in the skin
 a. Warm blood is brought to the surface by __________________________
 b. Skin temperature is lowered by _________________________________

11. When environmental temperature is greater than body temperature:
 a. Vasodilation ___
 b. Causing __ that
 c. Decreases __
 d. Evaporation ___

12. Regulation of body temperature is an example of a _________________
 controlled by a ____________________
a. Increases in blood temperature are detected by _____________________
 __
 1. Activates mechanisms that ________________________________

b. Decreases in blood temperature are detected by ______________

 1. Initiate heat gain by ________________________________

c. Under what conditions can the set point of the hypothalamus be changed?

